Operating at LF and MF

The Experimenters’ Bands

137kHz and 475kHz

Andy Talbot G4JNT / G8IMR
A Bit of History

• In 1996 We got an allocation at 73kHz, with up to 1 Watt ERP allowed

• 14 Feb 1997, G3LDO and G3XDV had a “QSO” over 200 metres across a car park
 – but that’s a capacitor!!!!

• ... so I started playing, first with a loop antenna, then a vertical, running 180 Watts from two Maplin audio amps in bridge.
A Bit more History

• ... And got 3km. This was a new record! Soon extended to 8km.

• Then to 99.6km with G3YGF driving around with a portable receiver. All one-way so far
 – People were getting interested, others came on the band.
 – First “DX” Two way, G4JNT/G3LDO 57km 23 Aug 1997

• Then G3PLX came along and changed the rules completely
Going Narrow

• With a Motorola 56002 (DSP kit of that era) he made a narrow band spectrum analyser, showing a waterfall in bandwidths of milli-Hz
• I wrote software to send 40s dot length CW
• He received this at 393km
• SlowCW (now called QRSS) was born
 – They said “It isn’t real amateur radio ...” they were wrong, of course.
31 July / 1 August 1997
Meanwhile – other stuff happened

- The Internet was new, and we set up one of the first user groups / reflectors. Exchanging ideas, and setting up skeds.
- Soundcards had arrived in PCs, and Richard Horne (a bird watcher) had written ‘SpectroGram’ audio waterfall display and monitoring software. QRSS for all.
Tech Moves On

- **VE2IQ** *Coherent* –
 - Error Corrected BPSK at 10 Bits/s
 - Dedicated hardware digitiser
- **Soundcard software appeared**
 - *WOLF* by KK7KA, 10BPS BPSK with better error correction
 - That and QRSS, first Transatlantic crossing on 73kHz by G0MRF et al.
 - 1kW Transmitter and vertical antenna using a church tower.
Rapid Progress

• The LF reflector was new, we’d never experienced such an effective real time exchange of ideas before.

• Everyone began to accept progress

• Old Decca transmitters appeared surplus, several stations got 1kW signals

• DX became the norm, although the UK was the only country that could transmit on 73kHz
A New Band, and another

• The success on 73kHz spurred the authorities to give us a new allocation at 137kHz
 – Most of Europe, but unfortunately not the US
 – PCs, data modes and techniques continued improving, WSPR appeared.

• A few years later, marine use of 500kHz stopped and we got NoVs to play there.
 – I ran a 100 Watt CW / PSK31 Beacon for over a year.

• Replaced with a worldwide 475kHz allocation,
 – Firstly by NoV, then incorporated in the new licence
The Licence Allows:

• 135.7 to 137.8kHz 2100Hz
 – 1 watt ERP (you’ll be lucky 😊)

• 472 to 479kHz 7000Hz
 – 5 watts EIRP (perhaps, if you work hard at it)

• No restrictions on modulation type,
 • Although voice isn’t used
Equipment

• Receiving - is dead-easy
 – Just about any general coverage amateur transceiver will go down to 470kHz at full spec.
 – Most cover 137kHz, although sensitivity may roll off
 – Any SDR that can do MF/HF will go down that far
 – Atmospheric noise is high, so noise figure is unimportant
 – Small RX antenna is OK. Tuneable loop is perfect

• For some advanced modes, frequency stability can be MORE critical than for microwaves.
PAORDT
Mini-Whip

The Antenna! ... or is it?
Large receiving Loop (G0API)

- Made from Waveguide 17
- Has also been used for transmitting (at low power)
Antennas for Transmit

• Electrically small at 2.2km wavelength so:
 – Inefficient
 – Low bandwidth / narrowband
 – Need to be **BIG**

• But trade off against each other
 – The *Chu* limit
Antenna Types

• Loops
 – Convenient, easy to resonate (good caps)
 – 4th power law of size / radiation resistance
 – Very inefficient if small
 3m diameter, 2 turns of 8mm copper tubing at 73kHz
 -63dB Gain !!!!!!!!
 500Hz bandwidth
Vertical

- Easier to build
 - But you need one of these
 >>
 - (73 kHz)
Vertical Antenna theory

\[R_{RAD} = 1600 \left(\frac{h}{\lambda} \right)^2 \]

- Antenna Capacitance to Ground
- Loading Coil
 - Resonates Antenna Capacitance
- Radiation Resistance
 \(R_{RAD} \)
- Ground Loss
 \(R_{LOSS} \)
- Coil Loss
 \(R_{COIL} \)
- Height \(h \)
Top Hat

• Current tapers in a vertical to zero at the ends
 – A large capacitive top load keeps current in the vertical section almost constant

• 7 metre high Tee antenna at 137kHZ, with a big top hat, so $Heff. = 7m$ (near enough)

• $R_{rad} = 1600 \times \left(\frac{7}{2200}\right)^2 = 0.016\Omega$
Loading Coil

- C_{ANT} is typically 7pF / metre of the total wire used, but with a much lower contribution from bunched parallel wires in top hats.

My system is 260pF. Loading coil has to resonate this, $L = 5.2\text{mH}$

Use Wheeler to estimate

$$L(\text{nH}) = \frac{(D.N)^2}{(0.46 \cdot D + \text{Length})} \quad [\text{mm}]$$

Eg. 150 turns, 300mm diameter, 250mm long. Wound on a fermentation bin.
G3LDO and G3XDV with their 73kHz loading coils in 1997
Grounding and radials

- Short antennas - The E-field dominates
 - Terminate that as losslessly as possible
 - Proximity Effect with nearby lossy materials
 - Radials, will be electrically short
 - Run under the top hat, and as far out as the antenna is high.

Lots of wire, ground rods, connect to utilities

Use everything possible, do whatever you can.
Losses

• Loading Coil
 – Skin Depth of wire
 – typical coil R_L 6–20Ω at 137kHz,
 – so dominated by :

• Ground Resistance
 – Who knows! Measure it...
 – 130 - 180Ω at 137kHz. Lower with bigger antenna. Gain is more than height squared

• Weather dependent, PROXIMITY EFFECT
So - an inefficient antenna

- Loss = R_{RAD} (16mΩ) / All losses (12Ω + 100 Ω)
 = 0.00014 = -38dB
 (and yes, the 10.LOG form is correct)

For 1W ERP we’re going to need ~ 6kW of RF

Double the height needs less than 1.5kW
Several stations use 10m antennas with 1kW
The Smell of Burning Plastic
- JNT System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopole Radiation Factor</td>
<td>3</td>
<td>Alter figures in BLUE only</td>
</tr>
<tr>
<td>Frequency</td>
<td>137 kHz</td>
<td></td>
</tr>
<tr>
<td>Eff. Height</td>
<td>7 m</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>260 pF</td>
<td></td>
</tr>
<tr>
<td>Total resistance</td>
<td>150 ohms</td>
<td></td>
</tr>
<tr>
<td>Power input</td>
<td>700 Watts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irf</td>
<td>2.2 A</td>
<td></td>
</tr>
<tr>
<td>Fract lambda</td>
<td>0.0032</td>
<td></td>
</tr>
<tr>
<td>Rrad</td>
<td>0.0164 ohms</td>
<td></td>
</tr>
<tr>
<td>Loading Coil</td>
<td>5190.7 uH</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>-39.6 dB</td>
<td></td>
</tr>
<tr>
<td>EIRP</td>
<td>0.229 W</td>
<td>= 6.4 dBW</td>
</tr>
<tr>
<td></td>
<td>= 23.6 dBm</td>
<td></td>
</tr>
<tr>
<td>Voltage on Antenna</td>
<td>9652 V (RMS)</td>
<td></td>
</tr>
</tbody>
</table>

- Not so bad at 475kHz
 - 300 W legal limit
Transmitters

- Very little commercial equipment – you generally have to **BUILD** stuff!
- Signal source
 - Kits, several DDS sources
 - Crystal osc. Divider. Mix two crystals
 - Few transverter designs, linear modes not used very much, although that may increase.
 - Some transceivers can do a few mW
Power Amps

• Switching Designs using MOSFETS are popular
 – Efficient (elec. bills)
 – Devices are cheap, FETs cost pennies
 – Easy with SMPSU components
 – BUT Constant Envelope Only: CW / MFSK Modes

• Linear with cheap MOSFETs is also easy
G0MRF 250W linear (kit)

100W Class-D (Switching) Amp

LF SWR Bridge

http://www.g0mrf.com
Two Big Ones

700W 137kHz Class D
400W 475kHz Class E

And a smaller one. 40W linear
80kHz – 2MHz
Test Equipment

• Field Strength
 – Loop in air with calibrated receiver:
 • $\text{dBW (EIRP)} = 65.8 + P_{RX} \text{ (dBm)} + 20 \cdot \log(D / (F \cdot A))$
 (km, MHz, m2, Rx is $50\Omega R_{IN}$)

• Antenna Matching
 – Voltage / Current bridge (or SWR bridge)
 – Phase Meter – tuning is sharp, need zero X
 – Or VNWA
Operating

• Plenty of hand keyed on-off stuff on 475kHz
• Some on 137kHz, especially at weekends.
 – But unless you have a high power Tx, expect to only work local UK and perhaps Europeans
• QRSS is very popular
• Use Skeds and the LF reflectors
• WSPRIng 15 minute cycle introduced for LF, 9dB more sensitive
• Listen to SAQ special events on 17.2kHz
Grabbers
Overnight WSPR operation

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Call</th>
<th>MHz</th>
<th>SNR</th>
<th>Drift</th>
<th>Loc</th>
<th>Pwr</th>
<th>Reporter</th>
<th>Loc</th>
<th>km</th>
<th>az</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-02-21 07:50</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-10</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>G3XKR</td>
<td>IO70ux</td>
<td>210</td>
<td>274</td>
</tr>
<tr>
<td>2016-02-21 07:40</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-28</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>PI4THT</td>
<td>JO32kf</td>
<td>583</td>
<td>72</td>
</tr>
<tr>
<td>2016-02-21 06:52</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-23</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DF6MK</td>
<td>JN68ik</td>
<td>1042</td>
<td>100</td>
</tr>
<tr>
<td>2016-02-20 20:04</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-27</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DF6NM</td>
<td>JN59nj</td>
<td>899</td>
<td>96</td>
</tr>
<tr>
<td>2016-02-20 09:54</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-3</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>G3XIZ</td>
<td>IO92ub</td>
<td>147</td>
<td>28</td>
</tr>
<tr>
<td>2016-02-20 08:16</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>+19</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>F6CNI</td>
<td>JN19gb</td>
<td>391</td>
<td>120</td>
</tr>
<tr>
<td>2016-02-20 07:14</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-17</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DF2JP</td>
<td>JO31hh</td>
<td>554</td>
<td>82</td>
</tr>
<tr>
<td>2016-02-20 06:24</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-18</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>E0ILY</td>
<td>IO82qv</td>
<td>240</td>
<td>338</td>
</tr>
<tr>
<td>2016-02-20 05:48</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-13</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>G0HWW</td>
<td>JO02if</td>
<td>203</td>
<td>42</td>
</tr>
<tr>
<td>2016-02-20 05:04</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-27</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>D66OW</td>
<td>J031kk</td>
<td>572</td>
<td>81</td>
</tr>
<tr>
<td>2016-02-20 02:22</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-26</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DK7FC</td>
<td>JN49ik</td>
<td>730</td>
<td>99</td>
</tr>
<tr>
<td>2016-02-19 22:48</td>
<td>G4JNT</td>
<td>0.137475</td>
<td>-22</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>PA7EY</td>
<td>JO22jj</td>
<td>451</td>
<td>66</td>
</tr>
<tr>
<td>2016-02-19 21:02</td>
<td>G4JNT</td>
<td>0.137474</td>
<td>-10</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>MODSZ</td>
<td>IO821s</td>
<td>241</td>
<td>331</td>
</tr>
<tr>
<td>2016-02-19 20:46</td>
<td>G4JNT</td>
<td>0.137475</td>
<td>-25</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>G04NOS</td>
<td>IO81gp</td>
<td>172</td>
<td>300</td>
</tr>
<tr>
<td>2016-02-21 07:00</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-17</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>2E0ILY</td>
<td>IO82qv</td>
<td>240</td>
<td>338</td>
</tr>
<tr>
<td>2016-02-21 05:15</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-35</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>D66OW</td>
<td>J031kk</td>
<td>572</td>
<td>81</td>
</tr>
<tr>
<td>2016-02-21 05:15</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-33</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>SM2DJK</td>
<td>KP03au</td>
<td>1908</td>
<td>33</td>
</tr>
<tr>
<td>2016-02-20 22:46</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-29</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DF6NM</td>
<td>JN59nj</td>
<td>899</td>
<td>96</td>
</tr>
<tr>
<td>2016-02-20 09:16</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-23</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>PA7EY</td>
<td>JO22jj</td>
<td>451</td>
<td>66</td>
</tr>
<tr>
<td>2016-02-20 06:30</td>
<td>G8IMR</td>
<td>0.137606</td>
<td>-5</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>G3XDV</td>
<td>IO91vt</td>
<td>127</td>
<td>36</td>
</tr>
<tr>
<td>2016-02-20 06:30</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-20</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DF2JP</td>
<td>JO31hh</td>
<td>554</td>
<td>82</td>
</tr>
<tr>
<td>2016-02-20 06:30</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-29</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>DK7FC</td>
<td>JN49ik</td>
<td>730</td>
<td>99</td>
</tr>
<tr>
<td>2016-02-20 01:00</td>
<td>G8IMR</td>
<td>0.137607</td>
<td>-23</td>
<td>0</td>
<td>IO90iv</td>
<td>0.2</td>
<td>G6AVK</td>
<td>JO01ho</td>
<td>155</td>
<td>59</td>
</tr>
</tbody>
</table>
WSPR on 475kHz
As heard by PI4THT

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Call sign</th>
<th>Frequency</th>
<th>Gain</th>
<th>Power</th>
<th>Modulation</th>
<th>Distance</th>
<th>Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-02-16</td>
<td>04:06</td>
<td>G8HUH</td>
<td>0.475650</td>
<td>-13</td>
<td>0</td>
<td>1</td>
<td>PI4THT</td>
<td>685 km</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>22:36</td>
<td>DH0PAZ</td>
<td>0.475674</td>
<td>-15</td>
<td>4</td>
<td>0.2</td>
<td>PI4THT</td>
<td>191</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>22:24</td>
<td>F1AFJ</td>
<td>0.475704</td>
<td>-18</td>
<td>0</td>
<td>1</td>
<td>PI4THT</td>
<td>752</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>21:32</td>
<td>PA3ABK/2</td>
<td>0.475740</td>
<td>+4</td>
<td>0</td>
<td>0.5</td>
<td>PI4THT</td>
<td>155</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>21:26</td>
<td>PA3GHJ</td>
<td>0.475725</td>
<td>-26</td>
<td>0</td>
<td>0.2</td>
<td>PI4THT</td>
<td>160</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>21:20</td>
<td>DK6NI</td>
<td>0.475733</td>
<td>-9</td>
<td>0</td>
<td>0.1</td>
<td>PI4THT</td>
<td>412</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>21:00</td>
<td>IW4DXW</td>
<td>0.475796</td>
<td>-17</td>
<td>0</td>
<td>0.5</td>
<td>PI4THT</td>
<td>897</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>20:24</td>
<td>G7NKS</td>
<td>0.475700</td>
<td>-10</td>
<td>0</td>
<td>0.05</td>
<td>PI4THT</td>
<td>489</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>20:02</td>
<td>DL6TY</td>
<td>0.475670</td>
<td>+3</td>
<td>0</td>
<td>1</td>
<td>PI4THT</td>
<td>298</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>19:30</td>
<td>DK6XY</td>
<td>0.475718</td>
<td>-15</td>
<td>0</td>
<td>0.2</td>
<td>PI4THT</td>
<td>321</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>17:50</td>
<td>DK7FC</td>
<td>0.475683</td>
<td>+6</td>
<td>0</td>
<td>1</td>
<td>PI4THT</td>
<td>336</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>17:46</td>
<td>PA0A</td>
<td>0.475731</td>
<td>+5</td>
<td>0</td>
<td>2</td>
<td>PI4THT</td>
<td>114</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>16:54</td>
<td>DK2DB</td>
<td>0.475642</td>
<td>-18</td>
<td>0</td>
<td>0.5</td>
<td>PI4THT</td>
<td>383</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>16:32</td>
<td>F6GEK</td>
<td>0.475767</td>
<td>-27</td>
<td>0</td>
<td>0.5</td>
<td>PI4THT</td>
<td>804</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>16:20</td>
<td>DJ0ABR</td>
<td>0.475665</td>
<td>-19</td>
<td>1</td>
<td>0.2</td>
<td>PI4THT</td>
<td>582</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>16:16</td>
<td>DL2WB</td>
<td>0.475778</td>
<td>-24</td>
<td>0</td>
<td>0.2</td>
<td>PI4THT</td>
<td>326</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>16:14</td>
<td>DD2UJ</td>
<td>0.475618</td>
<td>-17</td>
<td>-4</td>
<td>0.2</td>
<td>PI4THT</td>
<td>498</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>15:54</td>
<td>LA3EQ</td>
<td>0.475776</td>
<td>-25</td>
<td>0</td>
<td>1</td>
<td>PI4THT</td>
<td>688</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>15:52</td>
<td>DH5RAE</td>
<td>0.475755</td>
<td>-16</td>
<td>0</td>
<td>0.5</td>
<td>PI4THT</td>
<td>590</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>14:54</td>
<td>G3XIZ</td>
<td>0.475621</td>
<td>-15</td>
<td>0</td>
<td>0.05</td>
<td>PI4THT</td>
<td>489</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>13:18</td>
<td>DL6II</td>
<td>0.475711</td>
<td>-4</td>
<td>0</td>
<td>0.5</td>
<td>PI4THT</td>
<td>140</td>
</tr>
<tr>
<td>2016-02-15</td>
<td>13:10</td>
<td>DF2JP</td>
<td>0.475623</td>
<td>-17</td>
<td>0</td>
<td>1</td>
<td>PI4THT</td>
<td>103</td>
</tr>
</tbody>
</table>
Other Modes

• JT9, a new mode in the WSJT-X suite is gaining in popularity and allows real time QSOs
• Wolf 10 B/s BPSK (needs linear Tx)
• EbNaut ultra slow coherent BPSK, needs GPS or Rubidium stability