
Simple JT4 Code Generator  G4JNT  Page 1 

Simple JT4 Code Generator 

Andy Talbot   G4JNT   August 2011 

 

JT4 Overview 

JT4 in all its variants (A-G) consists of  a four tone Multi Frequency Shift Keyed (4-MFSK) 

waveform, with the spacing between the tones chosen depending on the frequency band and 

expected spreading. [1]  The MFSK message consists of 207 symbols (one of four sequential 

tones)  transmitted at a rate of 4.375Hz, the whole message therefore taking about 48 seconds to 

send.    A rigid timing structure is in use, and the start of the transmission must coincide with the 

UTC minute interval.   For beacon usage, the even minute has been universally chosen as the 

reference start time for beacons using this mode.   However, the decoding software does have a 

monitor function whereby transmissions in both even and odd minute slots are decoded.    

For the decoder to work correctly, the start point must be accurately defined, being no more than a 

few seconds late, and no more than one second early (the protocol was originally designed for 

EME with its 2 seconds delay).  The entire message contains exactly 13 characters taken from an 

alphabet of letters, numbers and a few punctuation symbols.   More details of JT4 coding can be 

found at [2] 

 

Code Generator Module  

The unit described will generate correctly timed and formatted JT4 symbols on a two-bit parallel 

interface – the code updates synchronously at the 4.375Hz symbol rate; no additional clock is 

provided.  The code appearing on the interface, the binary value from 0 to 3 corresponds to the 

individual tone number of the JT4 transmission and is designed to be connected to a four-

frequency generator such as that in [3]   

A 16F627  (or 16F628) PIC  monitors the GPS serial data line and decodes the real time 

information from the GPS.   Every even minute, or every minute depending on requirements, the 

00 seconds marker is identified and 207 pre-stored symbols are sequentially output on the two 

0/5V logic level outputs.   Immediately  the end of the transmission, an optional  CW message is 

keyed via an open drain FET allowing additional identification. The key line is active (FET on) 

during the JT4 transmission. 

 

Connecting the GPS module. 

The description that follows, as well as the PIC firmware supplied, assumes that serial data in one 

of two formats is available.  The proprietary binary format given by the Motorola Oncore or M12 

type GPS module at 9600 baud  or standard NMEA text messages at 4800 baud carrying the 

$GPRMC string. The polarity of the data can be selected at the time the PIC firmware is compiled.  

Either native 5V logic or RS232  polarity can be catered-for 

Figure 1 shows the circuit diagram of the generator module.   Two input lines carry the serial data 

and 1 pulse-per-second synchronising signal.  There is also a third GPS interface connection 

shown, an output from the PIC to the GPS receiver.   At the moment this is not used and does not 



Simple JT4 Code Generator  G4JNT  Page 2 

have to be connected.  It has been included for any future version that could include GPS receiver 

initialisation.   A red-green LED shows the operating status and indicates whether the GPS is 

synchronised.  When valid data appears from the GPS module long green flashes are shown.  

When the GPS receiver is not synchronised, these change to short flashes.  When JT4 data is 

being sent, the LED flashes red at half-symbol rate, and then shows the CW data. 

 

 

 



Simple JT4 Code Generator  G4JNT  Page 3 

PIC Coding Details 

All information relating to the message, frequencies and setup need to be programmed into the 

PIC at the start.  There is no facility for field updating with an RS232 interface and all values need 

to be included within the source file which is compiled to give the .HEX file for download to the PIC 

device.  Compile-time flags are used to define the data polarity and format from the GPS.   

The basic PIC firmware is contained in the source file   JT4GEN2.ASM  .The JT4 symbol 

information resides in an auxiliary include file  JT4SYMBS.INC   which can be generated 

automatically by the utility  GENJT4.EXE.  Alternatively, the symbols can be derived from the 

WSJT software, following Joe’s instructions supplied with the software suite, formatted  and 

entered manually into the include file.   Each of the 207 symbols is formed from two bits giving a 

value from 0 – 3 which are packed four to a byte, most significant first to give 51 bytes in total.   

(As listed, they are read out in order left to right, top to bottom) 

Change the compile-time flags and CW message data to suit your requirements, and generate a 

new JT4SYMBS.INC file.   Save the new assembler file and use a utility such as MPASM 

(available from the Microchip website or included within the MPLAB suite ) to generate a new 

.HEX file for programming into the PIC device 

The code supplied is designed for 16F627 and 16F628 type devices.   

 

Compile-time flags. 

These appear at the start of the assembler listing as shown in the table below 

NMEAPol   defines if the polarity of the data coming from the GPS receiver is 0/5V logic level as 

supplied directly by most GPS modules, or RS232 polarity for direct connection to a PC.  Some 

early Garmin modules supply this latter polarity, as do some GPS receiver systems. .   Use 0 for 

5V Logic level / polarity, 1 for RS232. 

Please note that if true positive/negative RS232  voltage levels are encountered, an additional 

resistor of around 4k7 needs to be inserted in the Data In line to prevent excessive current into the 

PIC interface pin 

GPSDataType  should be set to 0 for  Motorola binary format data at 9600 baud;   Use 1 for 

NMEA ASCII format at 4800 baud 

BOTHMINUTES   defines if the JT4 is sent every minute, or every two minutes on the even 

minute boundary.   It should be set to 0 for convention even minute transmissions, and set to 1 for 

near 100% duty cycle transmission of the JT4 message every minute.   There is no option for 

transmitting only on the odd minutes. 

IGNOREPPS  allows timing information to be derived from the GPS data stream alone, without 

any need for the  1-PPS signal.   This simplifies the connection for some GPS receiver modules, 

but does mean the transmission timing could have up to one second uncertainty.   Set to 0 for 

normal high accuracy timing using the 1-PPS signal,  Use 1 for GPS serial data based timing only 



Simple JT4 Code Generator  G4JNT  Page 4 

Compiler Constants 

CWSPEED   is a compiler constant and defines the dot length of the CW, in milliseconds.  Use 

d’100’ for 12WPM,  d’75’ for 16WPM etc. 

BAUD9600 and BAUD4800 should not be changed. 

   

EE Data 

CWMsg   is a label to show that this line is EEPROM data   containing the CW message inside 

inverted commas.   It can be of arbitrary length and there is space for about 40 characters.  The 

data must have a zero, a null terminator, after the closing inverted commas exactly as shown to 

indicate the end of the message.  If not present, the software will crash!  If the CW message is too 

long the compiler will generate an error message about data being overwritten. 

The final line, ControlPLL is a flag to indicate whether the DDS clock X6 multiplier is to be used.   

For RDDS configuration it must be set to 0 - PLL disabled.  When this PIC code used with a 

standalone source, the PLL  may be enabled.  

 

 

 

JT4SYMBS.INC 

This include file is generated automatically in exactly the form shown as a result of running the 

utility GENJT4.EXE.  [3]    It should not be necessary to alter the file in any way.   As the file is 

regenerated and overwritten each time GENJT4 is run, it is advisable to save a copy under a 

different name – eg, GB3SCS_JT4SYMBS.INC.   

The WSJT software does offer the ability to generate the symbol data in a listed form, and users 

may want to use this route instead – for example to include a ‘QSO-type’  message into the 

beacon data instead of 13 characters of plain text.  In this case, the individual symbol data in the 

form of 207 numbers with values 0 – 3  will have to be assembled manually into the EE data 

bytes, four-at-a-time starting with the most significant pair of bits.   For example, if the first eight 

symbols generated are 3,1,2,0,2,1,3,0,  the resulting first two bytes will be   b’11011000’  and  

b’10011100’  or in hex  0xD8, 0xC0.   Both  these formats, binary or hex, (or even decimal as d’nn’ 

)  are acceptable to the compiler.   Read the WSJT documentation for further details of how to 

generate the symbol list. 

 

 

   GPSDataType  =  1 ;1 = NMEA  0 = Motorola Binary 

    NMEAPol  = 1 ;1 = RS232 Levels, 0 = TTL 

    BOTHMINUTES = 1 ;1 = every minute, 0 = Alternate (even) minutes 

 

    CWSPEED     =   d'50'           ;CW Dot length, ms 

    BAUD9600 = d'40' ;6.N + 18 = Fc/Baud  or  N ~ (Fxtal/Baud)/24 - 3 

    BAUD4800 = d'83'    



Simple JT4 Code Generator  G4JNT  Page 5 

 

 

 

 

CW Message 

At the end of the assembly listing, identify the block of code shown in Table 3.  Change the text 

within the inverted commas, after the Label ‘CWMsg’ to suit your requirements.  A blank string is 

allowed.   Please note,   the ‘0’ at the end of this string is essential, and must not be inside the 

inverted commas.  Without it the software will lock up.    Also, the Label CWMsg must appear on 

the extreme left hand side of the listing. 

 

 

 

 

 

 

 

 

 

.Test Mode 

The link or switch installed on B3 allows continuous carrier at the reference tone frequency  for 

test purposes with key-down.   If activated during the CW or JT4 sequence, this is allowed to  

complete before Test Mode is entered.   The red LED is on continuously. 

References 

[1]  http://physics.princeton.edu/pulsar/K1JT/ 

[2]  http://www.g4jnt.com/JTModesBcns.htm 

[3]  4FREQ_PIC_DDS_Source.pdf    

 

;  JT4 Symbols  generated from GENJT4     G4JNT Jul 2009    

;  Message data 'GB3SCS IO80UU' 

de  0x00, 0xD8, 0x14, 0xDA, 0xC4, 0x02, 0x8D, 0x28    

de  0xAA, 0x0A, 0xC7, 0x9C, 0xEF, 0xD6, 0x68, 0xC3    

de  0xA5, 0x74, 0x2C, 0x6A, 0x75, 0x1E, 0xB8, 0x34    

de  0xC4, 0xC6, 0xF5, 0xC4, 0x67, 0x33, 0x9D, 0xA4    

de  0x59, 0x76, 0xA9, 0x65, 0x83, 0x53, 0x73, 0x50    

de  0xC0, 0x51, 0xE9, 0x2B, 0x57, 0x63, 0xE2, 0x34    

de  0x26, 0x73, 0xD6, 0x6C 

TABLE 3 

;================================ 

  org   0x2100 

JT4MsgData 

   include "jt4symbs.inc"       ;Left Justified JT4 tones, 4 per byte 

CWMsg           de      "G4JNT",0 

;-------------------------------- 


